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A hicrarchical approach is described for an automated target recognition (ATR) system, VIGILANTE, that
uses @ massively parallel, analog processor (31) ANN). The 312 ANN processor is capable of performing 64 con-
current inner products of size 1x4096 every 250 nanoseconds. A complete 64x64 raster scan of a 256x256 inage
canbe evaluated by the 3DANN with its 64 modifiable ternplates in about 16 milliseconds. ‘1’0 fully utilize the
analog processor and accommodate its high bandwidth requirements, the vectors (tem plates) loaded on to the
3DANN provide dimensionality reduct ion for a back-end set of classifiers. The templates used in the reported
algorithin are hierarchically generated sets of cigenvectors taken from a partitioned set of library object images.
As information is accumulated about the target (e.g. object class), a more refined set of eigenvectors reflecting
this knowledge can be loaded and more specialized classifiers utilized. The classifiers provide information related
to the ATR task: location, class, sub-class,and orientation of target(s). Wereport some preliminary results that
examine the performance of orientation classifiers. With no knowledge about object class or orientation, a neural
network achieves 94 .2% in determining to which one of three classes from vert ical (30°, 45°, or 60° ) anobject
immage IS oriented (4:30°). Using arn cigenvector template set generated from a distribution where both object class
and orientation are known, a neural network classifier achicves 96% in orienting the object to within 4:22.5°. T'his
information can be used to load even more specific cigenvector sets which should lead to more accurate object
location during tracking and an enhancement in object recognition tasks.

1 Introduction

Many of the problems associated with automated target recognition (A'TR) have been studied independently
but 110 fully automated, general imaging system exists that is able to detectan aerial target, distinguish it as
hostile (or interesting), and then perform rea time tracking. The reasons for this are quite well knownin the
machine vision community. For most non-trivial targets, changes iuappearance due to lighting variations, scale,
orientation, clutter, etc. pose significant difficulties in determining where an object is, its class, sub-class, or its
orientation. These difficulties often require high resolution imagery and substantial amounts of computationto
successfully evaluate a scene. Previously, only large supercomputers were able to provide the processing power
to runmost ATR algorithis at anything close to the framme rates sufficient for tracking a fast airborne target.

The VIGTL ANTE project is currently developing a gimbaled, opt ical beneh coupled to a massively, parallel
processing engine designed to performn as a self-contai[ld A'T'R systein on an airborne platform. The gimbaled
optical beneh (VIGIL ) provides a multiple sensor imaging system that delivers a single 256x256 image f{rom one
of the sensors to a high speed data processing path (ANTE) a 30 framnes per second, ‘The set of sensors to be
integrated into the optica bench include four sensors: @ 1.5 degree field of view (IFOV) CCD; a CCD camera with
a controllable zoom; aninfra-red QUIP cam era;and an ultra-violet. camera. The optical bench is controlled by



ahost computer (@ P6 running at 200 MHz) that selects the active sensor, directs the gimnbal, adjusts the zoon,
and sets other sensor specific parameters (e.g. exposure time).

‘T'he data processing path of VIGIL ANTE, provides a dedicated sct of digital and analog parallel processors
to implement the high bandwidth (30 frames per second) imaging operations required for ATR applications.
The heart. of the ANTE system is the 31D ANN processor. It is ananalog processor, capable of performing 64
concurrent vector dot product operations of 4096 diinensions each, every 250 nanoseconds. A back end digital
parallel machine consisting of 512 processors receives the output from the 3DANN, perforis simnple parallel
operations (e.g. aneural network classifier) and sends its results to the host processor for final evaluation.

The 3D ANN effectively performs 64 convolutions on the original image with 64x64 templates in approximately
16 milliseconds. The job of the digital post-processor and the host is to distill the information extracted by the
3D ANN and put it in a form suitable for use by an ATR application: target classification{, type,identification,
direction, etc. The next section describes the 3DANN architecture more fully. We then describe our proposal
for controlling the VIGILANTE machine during an ATR task. Finally, we show preliminary results using neural
network classifiers to provide orientation in formation within our control framework.

2 Data Processing Path

The data processing path of VIGIL ANTE consists of a frame grabber, a digital loading device and digital
to analog converter (CLIC),the 3DANN processor and a bank of analog to digital converters, the SIMD, 512
processor CNAPS boards, and the host PG with its secondary storage, Thekey components of the system arc
showninFigure 1. The frame grabber stores the iinage from tile active sensor on the optical bench and moves it
in1x64 pixelrows or columns to the CL1C. The CLIC takesin a row or columnand shifts it on to its 64x64 array
of digital to analog converters each clock cycle (250 nanoscconds). T'he 64x64 digital elements are converted to
analog and placed on the 31D ANN’s internal bus for inner product calculation.

The central component of VIGILANTE is the 31D ANN module. 1t has 64 64x64 digitally specified weight
templates. These templates and the analog input signal from the CLIC are evaluated every 250 nanoseconds
resulting in a 64 dimensional output vector, v-
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where ¢ is a 64x64 mput image and ' is the matrix defined by the tem plates. The templates in the 3D ANN
module are specified with 8 bit precision. It takes approximately 1 willisccond to load a new set of templates
provided the set. was resident in the loader’s bufler (the loader provides space for up to 5 sets of templates). If the
t emplates need to be retrieved from the host, the time it takes to load the templates is between 25-50 milliseconds
(25 if the templates are resident in main memory). A complete convolution of the 256x256 image with a 64x64
template requires approximately 16 milliseconds to complete.

The 64 analog values generated by the 31D ANN and are converted to 8 bit digital values and are passed along to
a memory buffer where they can be accessed by the CNAPS processors (Ada pt ive Solut ions, Beaverton, Oregon).
The boards process the output of the 31D ANN and reduce the amount of information (64- 256x256 inages) so that
it can be efficiently evaluated by the host. The host processor selects the sensor, moves t emplates on and off the
JDANN;, selects which algorithms run on the CNAPS hoards, and evaluates the results of the data processing. It
also provides “context, " for carrying out the AT'R tasks asit remembers which target is being tracked and updates
VIGIL ANTE’sstate appropriately t o reflect this.
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Figure 1; VIGIL ANTE architecture,

3 Algorithm Description

Our goalfor VIGIL ANTE is to demonstrate that the system is able to acquit-e an airborne object, and
subsequently recognize and track the target over multiple fraines. The variations in a target's appearance due to
class (helicopter, missile, plane, ctc.), identity, orientation, lighting, and scale make this task extremnely difficult.
Siinple correlation scheines (each template is an object image) using mismatch energy are bound to fail duc
to the extremely large number of templates required to accurately depict the appearance of each target for
classification. Iorinstance with 3 classes each with a single object, 4scale sires, 4illumination schemes, and 200
object orientations, over 9000 templates would have to be processed and the results evaluated prior to determining
if a particular object is in the frame.

In a A'T'R scenario, even an extremely fast processor like the SDANN would be unable to search the 9000
templates quick enough to make real time decisions. Obviously, a different type of search strategy is required
for ATR type applications. Modification Of correlation strategics to allow for composite templates, reducing the
dimensionality of the image using either wavelets or eigenvectors, and the use of sensor fusionare all techniques
that have been applied to the ATR problem . ®:1:7:10.6

In VIGILANTE, we approach the A'I'R problemn using a hierarchical methodology. Our kuowledge base consists
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Figure 2: Example imagery from the object libraries and correspond ing eigenvector sets for the template hierarchy.
The template set that corresponds to VI GILANTE’s current knowledge about the target is loaded on the 3DANN
and associated classifiers arerunconcurrently onthe C NAPs processors during framne evaluation,

of a set of object libraries that give the appearance of anobject for various orientations, lighting conditions, and
scale. Sets of tem plates are generated with principal components analysis (I'CA) by sampling the library images
a different levels of specificity with respect to object class, sub-class, and orientation. PCA provides an ordered
set of cigenvectors that have beenshowntobe useful for face andobject recognitionand identification tasks. $34
The most general templates are generat ed using PCA from a randoin samnple drawn over the entire database. More

spectfic template sets are generated and reflect system knowledge of the object class, sub-class, and orientation.
These variablesare explicitly evaluated for during image processing over the course of an ATR scenario.

The motivation for using a hicrarchy is straight forward. Some information about a target is difficult to
ascertain and may take many frames or an appropriate view in order to obtainit. Problems such as identi fication
may require fine distinctions between closely related objects. Using a hierarchical set of cigenvectors allows the
systemto perform casier tasks early with projections on less specific eigenvector sets. The answers to these
questions (class, orientation with in 90°) canbe used to narrow the distribution of expected object images to a
single class or subclass at amorespecific orientation. The eigenvectors of such a distribution will provide finer
discrimination between object appearances thus allowing even more subtle characterization (e.g. identity) to be
made. Classifiers at ecach stage of the processing are working with an eigenvector set where the distribution is
maximal for the object of interest. Figure 2 snows the template hierarchy and the decision variables used to
update the resident template set.

The algorithm wc have developed for VIG L ANTY is organized in three phases: Acquisition, Recognition,
and Trackirig. During cach phasc, neural networks (or possibly other class ifiers) trai ned on the projected valtues
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I'igure 3: Algorithm to VIGIL ANTE architecture.

from the template set, locate the object (or its features) inthe frame and provide more specific orientation and
recognition information. In the Acquisition Phase (Al’) it is assumed that a airborue target’s image is of the
appropriate size (greater than 20 pixels if scen at profile for the given set of optics) if it is in the current frame.
No other knowledge 1s assuined about the target. The work required in this phase is to locate the object within
the frame, determine the class of the object (helicopter, plane, or 1nissile), and establish a rougli orientation
for the principal axis of the object (within £45°).In the Recognition Phase (RP), the eigenvectors specific to
object classand orientation (as determinedin AP or prior evaluation in RP) are loaded onto the 3DANN. As
information about subclass, identity, and orientation becomes known about the target, the appropriate template
set is loaded on the 3DANN. This phase is continued unt il the object is completely identified and a decision has
been made to track it. The Tracking Phase ('1'1") is designed to continuousl y maintain object tracking capability
when the object is too large for centroid tracking. In this event, a feature tracking system is implemented to
provide additional orientation and targeting inforination.

Figure 3shows themappingof the itnage evaluation algorithm onthe VIGILANTE architecture during Al’ and
RP. The 31D ANN projects a sub-window in the current frame on each of its 64 templates every 250 nanoseconds.
The CLIC is used to sclect the window to be evaluated and perforims the necessary digital to analog conversion.
The CNAPS boards implement neural network classifiers which take the 3 DANN output (the 64 projected values)
andimplement one of three specific tasks inparallel: location) classification, and orientation.



Figure 4: Example imagery used for testing orientation.The object is a miodel L-raise missle.

4 Results

"I’his section describes simulation results for orienting the principal axis of the objectin the image plane using
the hierarchical methodology. To reduce the complexity of the problem a number of simplifying assumptions
are made. Only 3 classes of objects, cach containing a single object sub-class are considered helicopters, cruise
misses, and planes. The object iS centered in the frame (all evaluated images have objects) using the output of
anobject detect or. ° T'he object measures at least 30 pixels in profile a the distance imaged along its principal
axis (independent of the object). T'wo scale sires arc incorporated in the database.

Anobject library was constructed with threemmodels (one from each class). The objects were oriented against
a plain background and imaged with diffuse lighti ng. Iinage operations were performed on the data to account for
scale and some orientations. For testing purposes, the models were imaged in a heavily cluttered scene. Figure 4
provides typical examples Of test lmagery.

T'wo experiments on orientation were performed using the test imnagery, siimulating the hierarchical approach
described inthe previous section. Inthe first experiinent, no knowledge was assumed about the object. The
task was to determine which orientation as measured from perpendicular- 30°, 45°, or 60° best describe the given
object. The classifier was considered successful if the true angle of the principal axis of the object was within
+30° of thelabeled class. The cigenvector set used to generate the 64 values associated with the image were
generated from asample of 1000 images drawn randomly from the entire object library.

Inthe sccond experiment, the class of the object and its orientation to within 445° is given.In this case,
the classifier was to refine the orientation estimate. To be successful, it needed to be within £22.5° of the true
oricntation. As object class was known, three eigenvector sets were generated from a random sample of 1000
images drawn using the identified object over a uniform range of allowed orientation. ligure 2 providesimages
of the actual eigenvector sets used inthe study.

The orientation classifier is a simple feed forward neural network. It employs a single hidden layer with 20
nodes which feeds a single output variable taking on values between £1.0. Each sub-image block is evaluated
independently by fivst projecting it on cach of the 64 eigenvectors and then providing these outputs to the neural
network for classification. The output is then linearly mapped back to anangle. The network is trained with back
propagation? on images in the object libraries incorporat ing scae, object, and orientation variations. A portion
of the training set (a hold out set) is reserved to stop network learning in order to enhance generalization. Also
included in the training and hold out set are some examples of the object in a cluttered environment. This was
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Figure 5: Neural network output mapping for image plane orientation.

done to enhance generaization for the test imagery.

Figure 6 presents the malts of the classifiers onthe respective objects.  The neural networks had little
difference in their identification rates with respect to object class. Only the missile orientation for the missile was
significantly higher in the Acquisition Phase. Thisis mostlikely clue to its relatively simple shape (as compared
to the helicopter or plane) and its brightness when compared with background. Most likely higher results can be
obtained with more precise data. The object libraries were generated using tnanual alignment. We are currently
st alling atotally automated systemn for generating the object libraries from scale models.

5 Conclusion

We have described an algorithin that is easily implemented in t he VIGI L ANTE architecture that provides
good orientation rates on three airborne model objects in @ cluttered scene. The agorithm provides a straight
forward hierarchical decomposition Of an ATR scenario general template sets for easy tasks when little is known
about the object, more specific template sets for the finer discritnination needed for recognition or identification.
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Figure 6: Bvaluation success rate for determining the iinage planc orientation of an object. The rate is the
percentage of novel images whose neural network output was linearly mapped to within 45.0 or 22.5 degrees
of theactual orientation of the principal axis intheimage plane depending up on which phase (Acquisition or
Recognition) was being evaluated. For each object, approximately 6000 images were used to estimate the rate.
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